(Accredited with 'A+' Grade by NAAC) CENTRE FOR DISTANCE AND ONLINE EDUCATION

Annamalainagar – 608 002

Semester Pattern: 2025-26

Instructions to submit Third Semester Assignments

- 1. Following the introduction of semester pattern, it becomes mandatory for candidates to submit assignment for each course.
- 2. Assignment topics for each course will be displayed in the A.U, CDOE website (**www.audde.in**).
- 3. Each assignment contains 5 questions and the candidate should answer all the 5 questions. Candidates should submit assignments for each course separately. (5 Questions x 5 Marks = 25 marks).
- 4. Answer for each assignment question should not exceed 4 pages. Use only A4 sheets and write on one side only. **Write your Enrollment number on the top right corner** of all the pages.
- 5. Add a template / content page and provide details regarding your Name, Enrollment number, Programme name, Code and Assignment topic. Assignments without template/ content page will not be accepted.
- 6. Assignments should be handwritten only. Typed or printed or photocopied assignments will not be accepted.
- 7. **Send all Third semester assignments in one envelope**. Send your assignments by Registered Post to The Director, Centre for Distance and Online Education, Annamalai University, Annamalai Nagar 608002.
- 8. Write in bold letters, "ASSIGNMENTS THIRD SEMESTER" along with PROGRAMME NAME on the top of the envelope.
- 9. Assignments received after the **last date with late fee** will not be evaluated.

Date to Remember

Last date to submit Third semester assignments : 01.11.2025 Last date with late fee of Rs.300 (three hundred only) : 15.11.2025

DIRECTOR CDOE

CENTRE FOR DISTANCE AND ONLINE EDUCATION S019 - M.Sc. PHYSICS SECOND YEAR - III SEMESTER ASSIGNMENT QUESTION

019E2310: CONDENSED MATTER PHYSICS - I

- 1. a. Discuss different types of defect in crystal.
 - b. Explain Heitler- London theory.
- 2. a. Discuss powder method and powder diffractometer.
 - b. Deduce reciprocal lattice for BCC and FCC.
- 3. Explain various crystal imperfections
- 4. Discuss the Debye model of heat capacity.
- 5. a. Deduce Block theorem.
 - b. Outline Kronig-Penny model

019E2320 QUANTUM MECHANICS - II

- 1. Discuss time Zeeman and Stark effect...
- 2. a. Discuss Einstein theory of radiation.
 - b. Determine transition probability for a harmonic perturbation
- 3. Discuss variation method and find the upper limit of energy of the ground state of helium atom using variation method.
- 4. Describe the MO treatment of Hydrogen molecule ion.
- 5. Write Dirac's linear Hamiltonian for free particle and find out matrices for α and β . Using Relativistic Dirac equation to show that electron is endowed with spin $\frac{1}{2}$.

019E2330: NUCLEAR AND ELEMENTARY PARTICLE PHYSICS

- 1. Discuss the effective range theory of n-p scattering at low energies.
- 2. Give the theory of liquid drop model of a nucleus and discuss it.
- 3. Discuss the compound nucleus theory. Derive Breit-Wigner one level formula.
- 4. Discuss the Bohr Wheeler theory of nuclear fission. What is the fissionability parameter and obtain the condition for the spontaneous fission.
- 5. a. Discuss CPT theorem.
 - b. Write Down the Gell-Mann-Okubu mass formula and explain how masses of hadrons are related