(Accredited with 'A+' Grade by NAAC) CENTRE FOR DISTANCE AND ONLINE EDUCATION

Annamalainagar – 608 002

Semester Pattern: 2025-26

Instructions to submit Second Semester Assignments

- 1. Following the introduction of semester pattern, it becomes **mandatory** for candidates to submit assignment for each course.
- 2. Assignment topics for each course will be displayed in the A.U, CDOE website (www.audde.in).
- 3. Each assignment contains 5 questions and the candidate should answer all the 5 questions. Candidates should submit assignments for each course separately. (5 Questions x 5 Marks = 25 marks).
- 4. Answer for each assignment question should not exceed 4 pages. Use only A4 sheets and write on one side only. **Write your Enrollment number on the top right corner** of all the pages.
- 5. Add a template / content page and provide details regarding your Name, Enrollment number, Programme name, Code and Assignment topic. Assignments without template / content page will not be accepted.
- 6. Assignments should be handwritten only. Typed or printed or photocopied assignments will not be accepted.
- 7. **Send all Second semester assignments in one envelope**. Send your assignments by Registered Post to The Director, Centre for Distance and Online Education, Annamalai University, Annamalai Nagar 608002.
- 8. Write in bold letters, "ASSIGNMENTS SECOND SEMESTER" along with PROGRAMME NAME on the top of the envelope.
- 9. Assignments received after the **last date with late fee** will not be evaluated.

Date to Remember

Last date to submit Second semester assignments : 01.11.2025 Last date with late fee of Rs.300 (three hundred only) : 15.11.2025

DIRECTOR CDOE

CENTRE FOR DISTANCE AND ONLINE EDUCATION S019 - M.Sc. PHYSICS

FIRST YEAR – II SEMESTER ASSIGNMENT QUESTION

019E1210: MICROPROCESSORS AND MICROCONTROLLER

- 1. Draw and explain the architecture of 8085.
- 2. Explain the various addressing modes of 8085 microprocessor with example
- 3. a. Discuss register organisation in 8086
 - b. Explain addressing modes of 8086.
- 4. Write simple programs of 8051 microcontroller.
 - i) addition, ii) subtraction, iii) multiplication and iv) division.
- 5. Elaborate the interface of ADC and DAC

<u>019E1220: QUANTUM MECHANICS - I</u>

- 1. a. Deduce Schrodinger wave equation and obtain for the wave function for a free particle
 - b. State and prove Ehrenfest Theorem.
- 2. a. Derive the wave function of a particle in a box. Also find the Eigen value and Eigen function using Schrödinger's Equation
 - b. Write notes on Pauli Spin matrices.
- 3. Establish the Schrodinger's equation for a linear harmonic oscillator and discuss its theory in details.
- 4. a. Distinguish with between schrodinger, Heisenberg & interaction representation &, obtain the equator of motion in each representation.
 - b. Define the Clebsch-Gordan coefficient and discuss their symmetry properties.
- 5. a. Discuss the condition for validity of Born approximation method for spherically symmetric potentials.
 - b. Define optical theorem.

019E1230: ELECTROMAGNETIC THEORY

- 1. a. State Gauss's law and derive Gauss's law in differential form.
 - b. Explain Poisson's equation and Laplace's equation..
- 2. a. State and explain Biot-Savart Law
 - b. Discuss divergence and curl of B.
- 3. a. Deduce Maxwell's equation in free space.
 - b. State and explain pointing theorem.
- 4. a. Discuss scalar and vector potentials.
 - b. Analyze Gauge transformation
- 5. a. Formulate the Fresnel's equations when E is perpendicular to the plane of incidence.