(Accredited with 'A+' Grade by NAAC) CENTRE FOR DISTANCE AND ONLINE EDUCATION

Annamalainagar – 608 002

Semester Pattern: 2025-26

Instructions to submit First Semester Assignments

- 1. Following the introduction of semester pattern, it becomes mandatory for candidates to submit assignment for each course.
- 2. Assignment topics for each course will be displayed in the A.U, CDOE website (www.audde.in).
- 3. Each assignment contains 5 questions and the candidate should answer all the 5 questions. Candidates should submit assignments for each course separately. (5 Questions x 5 Marks = 25 marks).
- 4. Answer for each assignment question should not exceed 4 pages. Use only A4 sheets and write on one side only. **Write your Enrollment number on the top right corner** of all the pages.
- 5. Add a template / content page and provide details regarding your Name, Enrollment number, Programme name, Code and Assignment topic. Assignments without template/ content page will not be accepted.
- 6. Assignments should be handwritten only. Typed or printed or photocopied assignments will not be accepted.
- 7. **Send all First semester assignments in one envelope**. Send your assignments by Registered Post to The Director, Centre for Distance and Online Education, Annamalai University, Annamalai Nagar 608002.
- 8. Write in bold letters, "ASSIGNMENTS FIRST SEMESTER" along with PROGRAMME NAME on the top of the envelope.
- 9. Assignments received after the **last date with late fee** will not be evaluated.

Date to Remember

Last date to submit First semester assignments : 01.11.2025 Last date with late fee of Rs.300 (three hundred only) : 15.11.2025

DIRECTOR CDOE

CENTRE FOR DISTANCE AND ONLINE EDUCATION S019 - M.Sc. PHYSICS FIRST YEAR - I SEMESTER ASSIGNMENT QUESTION

019E1110: CLASSICAL AND STATISTICAL MECHANICS

- 1. A. State and explain principle of least action.
 - b. Write Hamilton's variation statement and obtain the Lagrangian equation motion.
- 2. What is the concept of a canonical transformation? Derive equation describing a canonical transformation.
- 3. Derive Maxwell Boltzmann law of distribution of velocities under kinetic theory of gases.
- 4. State and discuss Liouville's theorem by elaborating the principle of conservation of density in phase space.
- 5. Write short notes on
 - a. Gibb's paradox
 - b. Postulate of kinetic theory of gases
 - c. Ensemble and its type
 - d. D'Alembert's principle

019E1120: ELECTRONICS

- 1. a. Describe the construction and working of a p-channel depletion type MOSFET.
 - b. Write short notes on
 - i. Class-B amplifier,
 - ii. Class C amplifier, iii. Push-pull amplifier.
- 2. Discuss Monostable and Bistable multivibrator.
- 3. a. Describe weighted resister DAC
 - b. Draw the schematic circuit diagram and waveform of the A/D converter using voltage to frequency converter.
- 4. List the ROM applications and differentiate between ROM and RAM.
- 5. a. Explain the basic monolithic integrated circuits.
 - b. Explain in detail about Hartly oscillator.

019E1130: MATHEMATICAL PHYSICS

- 1. **a.** S.T. the matrix $A = \begin{bmatrix} o & c & -b \\ -c & o & c \\ b & -a & a \end{bmatrix}$ satisfy Cayley Hamilton theorem
 - **b**. Find the rank the following matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{bmatrix}$$

- 2. a. Obtain any two recurrence relations for Legendre polynomials
 - b. Evaluate the Gamma function $\Gamma\left(\frac{3}{2}\right)$
- 3. a. State and prove quotient law of tensors.
 - b. Obtain power series solution for the Bessel's equation.
- 4. Solve the following differential equation using laplace transform

$$y'' + 9y = 0, y(0) = 0, y'(0) = 1.$$

5. Find the residue of $\frac{z}{\cos z}$. At its poles