(Accredited with 'A" Grade by NAAC) CENTRE FOR DISTANCE AND ONLINE EDUCATION

Annamalainagar - 608 002

Semester Pattern: 2025-26

Instructions to submit Third Semester Assignments

- 1. Following the introduction of semester pattern, it becomes mandatory for candidates to submit assignment for each course.
- 2. Assignment topics for each course will be displayed in the A.U, CDOE website (www.audde.in).
- 3. Each assignment contains 5 questions and the candidate should answer all the 5 questions. Candidates should submit assignments for each course separately. (5 Questions x 5 Marks = 25 marks).
- 4. Answer for each assignment question should not exceed 4 pages. Use only A4 sheets and write on one side only. **Write your Enrollment number on the top right corner** of all the pages.
- 5. Add a template / content page and provide details regarding your Name, Enrollment number, Programme name, Code and Assignment topic. Assignments without template / content page will not be accepted.
- 6. Assignments should be handwritten only. Typed or printed or photocopied assignments will not be accepted.
- 7. **Send all Third semester assignments in one envelope**. Send your assignments by Registered Post to The Director, Centre for Distance and Online Education, Annamalai University, Annamalai Nagar 608002.
- 8. Write in bold letters, "ASSIGNMENTS THIRD SEMESTER" along with PROGRAMME NAME on the top of the envelope.
- 9. Assignments received after the **last date with late fee** will not be evaluated.

Date to Remember

Last date to submit Third semester assignments : 01.11.2025 Last date with late fee of Rs.300 (three hundred only) : 15.11.2025

CENTRE FOR DISTANCE AND ONLINE EDUCATION

SECOND YEAR – III SEMESTER

S018 – M.Sc MATHEMATICS

018E2310: COMPLEX ANALYSIS – I

(5x5=25)

- 1. Show that the real and imaginary parts of an analytic function are harmonic. .
- 2. State and Prove Luca's theorem.
- 3. Prove that, every rational function has a representation by partial fractions
- 4 Show that, every convergent sequence is a Cauchy sequence.
- 5. State and prove Cauchy's Theorem for a rectangle

(5x5=25)

018E2320: SET TOPOLOGY

- 1. Let X be metric space. Show that, a subset G of X is open \Leftrightarrow G is a union of open spheres
- 2. Let X be a complete metric space, and Y be a subspace of X. Prove that, Y is complete $\Leftrightarrow Y$ is closed.
- 3. State and Prove Baire's Theorem
- 4. State and Prove Lindelof's Theorem
- 5. a) Show that, any continuous image of a compact space is compact
 - b). Prove that, every closed and bounded subspace of the real line is compact

(5x5=25)

018E2330 : GRAPH THEORY

- 1. Prove that The number of edges in a tree on ν vertices is ν -1.
- 2. Prove that For a graph G with ε , = v-1, the following statements are equivalent
 - 1. G is connected
 - 2. G is Acyclic
 - 3. G is a tree
- 3. State and Prove Hall's Theorem
- 4. State and Prove Tutte's Theorem.
- 5. Prove that a bipartite graph G has a perfect matching iff $|N(S)| \ge |S|$ for all $S \subset V(G)$..

018E2340: PROBABILITY THEORY

- 1. If two dice are thrown, what is the probability that the sum is
 - a) Greater than 8 and
 - b) neither 7 nor 11?
- 2. State and Prove Inversion Theorem
- 3. Find the mean and Variance of Bionomial Distributions from MGF.
- 4. Let (X,Y) be a bivariate normal rv with parameters μ_1 , μ_2 , σ_1^2 , σ_2^2 , and ρ , and let U= aX +b, a≠0, and V = cY +d, c≠0. Find the joint distribution of (U,V).
- 5. The regression lines of Y on X and X on Y are respectively

Y=aX+b and X=cY+d

Show that the ratio of the S.D's of y and X is $\sqrt{a/c}$ and the arithmetic means are

$$\overline{X} = (bc + d)/(1 - ac) \overline{Y} = (ad + b)/(1 - ac)$$
